US 2002/0100017 A1l

2A by the box labeled “Configuration Version Data” accom-
panying the publisher configuration 220 in FIGS. 2A and
2B.

[0041] Two types of assemblies are possible, those having
strong names, e.g., including a public key signature or the
like such that any two different assemblies can be unam-
biguously identified, and those having a simple name, which
may be ambiguous in the system, and, for example, do not
contain a public key. To provide isolation, any simply-
named assemblies on which an application manifest speci-
fies a dependency are treated as privatized assemblies 210 of
FIG. 2A, (wherein the dashed box represents that the
privatized assemblies may or may not be present for a given
application). Privatized assemblies are those that the appli-
cation does not intend to be shared with other applications.
Privatized assemblies that have simple names are normally
installed into the same folder as the executable application
code, whereby the assembly is isolated and the application
is given the effect of being monolithic, e.g., its assemblies
are not influenced by different assemblies having the same
simple name, and so forth. By not being shared, privatized
assemblies with simple names thus have the benefit of
virtually complete isolation, at the expense of the benefits
obtained by sharing. Assemblies having strong names do not
need to be placed into the application folder for isolation
purposes, because assemblies with strong names are known
to be the exact one the application needs. Thus, instead of
being privatized by storing in a certain directory, such
assemblies may be placed into a global assembly cache 212
to obtain the benefits of sharing, while effectively preserving
isolation, because an application that asks for a strongly
named assembly will get a copy that is exact (subject to
configuration overrides, as described below).

[0042] The application, manifest and assemblies, both
privatized and global, are installed to their appropriate file
system locations at the time the application or assembly is
installed. In general, the application, application manifest
and privatized assemblies (those not strongly named) are
copied to the application folder, while strongly named
assemblies may be copied to the global assembly cache 212
(e.g., one or more folders). Note that to provide side-by-side
existence of assembly versions, any existing assembly ver-
sions are not overwritten in the assembly cache 212 when

Jul. 25, 2002

another version is installed, (although a version can be
removed by other means, at the risk of breaking an appli-
cation that depends on that version). The assembly cache can
be hidden and/or access controlled to prevent assemblies
from being easily removed. The installation and general
usage of manifests and assemblies are further described in
the aforementioned United States Patent Application entitled
“Isolating Assembly Versions for Binding to Application
Programs.”

[0043] Example manifests in XML format are set forth in
the tables below, wherein TABLEL1 is an example of a simple
application manifest where the application depends on a
side-by-side version of COMCTL32:

TABLE 1

<?xml version="1.0" encoding=“UTF-8” standalone="yes”?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1”
manifestVersion="1.0">
<assemblyldentity
version="1.0.0.0"
processorArchitecture=“X86”
name=“Microsoft. Windows.mysample App”
type=“win32”
/>
<description>Your app description here</description>
<dependency>
<dependentAssembly>
<assemblyldentity
type=“win32”
name="Microsoft. Windows.Common-Controls”
version=“6.0.0.0"
processorArchitecture=“X86
publicKeyToken=“6595b64144ccf1df”
language="*"
/>
</dependentAssembly>
</dependency>
</assembly>

[0044] TABLE2 is an example of an application manifest
where the application depends on a side-by-side version of
COMCTL32 and an assembly is privatized to the applica-
tion:

TABLE 2

<?xml version="1.0" encoding=“UTF-8” standalone=“yes”?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1”
manifestVersion="1.0">

<assemblyldentity
version=“1.0.0.0"
processorArchitecture=“X86
name=“Microsoft. Windows.mysample App”
type=“win32”
/>
<description>Your app description here</description>
<dependency>
<dependentAssembly>
<assemblyldentity
type=“win32”
name="Microsoft. Windows.Common-Controls”
version="6.0.0.0"
processorArchitecture=“X86
publicKeyToken="6595b64144ccf1df”
language="“*"
/>



